

M.Sc. Microbiology

MANDSAUR UNIVERSITY

FACULTY OF LIFE SCIENCES

M.Sc. Microbiology

PEOs, POs, PSOs, COs

M.Sc. Microbiology

About Faculty of Life Sciences:

The Faculty of Life Sciences (FLS) was established in the year 2016. It offers B.Sc. (Hons.) Biotechnology & Microbiology and M. Sc. Biotechnology & Microbiology courses. The intakes for bachelor programs are 30; while in postgraduate programs are 18. It offers top-class infrastructure, highly qualified and dedicated faculty members, and an excellent environment for academic and intellectual growth. FLS has international and national MoUs with various institutes and industries. The faculty has developed a modest academic infrastructure comprising of smart classrooms and Hi-tech laboratories with advanced instrumentation facilities to teach and conduct research in multifarious areas such as Molecular Diagnostics, Molecular Biology & Genetic Engineering, Microbiology, Biochemistry, Chemistry, Bioinformatics, Immunology, Food Science & Technology, Bioinstrumentation, Bioprocess technology and Biosafety. FLS endeavours not only to produce excellent academic results but also to produce entrepreneur and skilled professionals. The faculty has organized many workshops, seminars, staff/faculty/entrepreneur development programmes, adjunct and guest lectures sponsored by the industries related to Biotechnology. The faculty of life sciences is considered as a research hub by the Mandsaur University for guiding research scholar leading to Ph.D.

Programme Details:

Programme Name	Duration	
M.Sc. Microbiology	2 Years (Four Semesters)	

Programme Structure:

Years	Odd Semester	Even Semester
First Year	Semester I	Semester II
Second Year	Semester III	Semester IV

M.Sc. Microbiology

PEOs, POs, PSOs, COs:

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)			
The M. S	The M. Sc. Microbiology program describe accomplishments that graduates are expected to attain the		
following	g:		
PEO1	To deliver a fineness in their microbiology domain along with research		
PEO2	To develop skills in the fields of clinical microbiology and also quality controller in		
	industries		
PEO3	The apprentices shall become an entrepreneur and also a businessperson commercializing		
	his/her own pathogenic product		
PEO4	To deliver the students with subject expertise, environmental alertness, ethical codes and		
	guidelines, along with holistic learning for professional development as well as personal		
	growth.		

PROGRAMME OUTCOMES (POs)			
On succe	On successful completion of M. Sc. Microbiology degree course, the students are attaining the		
followin	g:		
PO1	Gain domain specific knowledge on microorganisms and its application in various fields of		
	Microbiology		
PO2	Emphasize on innovation and entrepreneurial thinking in order to succeed in competitive		
	world.		
PO3	Acquire knowledge in qualitative, quantitative, analytical skills and to create the necessity		
	of Life Sciences stream through clearing NET/ SLET and other competitive exams.		
PO4	Learn the innovative and scientific techniques to meet the social and industrial needs.		
PO5	Communicate information on systematic problems and its implication on ethical thinking.		
PO6	Employ the microbes using numerous molecular biology procedures for the benefit of		
	living organisms.		
PO7	Measure up development of microbial metabolites using scientifically imperative		
	microorganism adopting bioprocess expertise.		
PO8	Integrate bioinformatics implements for evaluating molecular biology data of Microbes		
PO9	Comprehend the amalgamation of Nano-materials and the influence on microbiological		
	applications.		
PO10	To highlight the standing of artificial intelligence and machine learning in microbiology		
	and allied applications.		

M.Sc. Microbiology

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After the successful completion of M. Sc. Microbiology degree course, the students are attaining the				
following	g:			
PSO1	Recall the vital facets in the various areas of Microbiology, which enable them to be			
	accustomed with developing and progressive scientific notions in the field of Life Sciences.			
PSO2	Initiate the attained theoretical information through linking interdisciplinary areas of			
	Microbiology			
PSO3	Estimate the requirement and its efficiency of scientific request towards the betterment of			
	society			
PSO4	Examine the development in Microbiology in terms of research benefits which will lead to			
	new creations			
PSO5	Generate advanced ideas in technical areas of Microbiology, to become an manufacturer,			
	businessperson and in the long run an ideal citizen beneficial for the country.			

SEMESTER I

MIC08	0 Microbial Physiology & Biochemistry	Theory	Credit 4(3+1)		
After su	After successful completion, this course enables students:				
CO1	Understanding the laws of thermodynamics, concepts of energy changes and their application to biological syster studies and reactions.	entropy, ent ns and variou	halpy and free is biochemical		
CO2	Students will be able to demonstrate an understanding of principles, such as the structure/function of bimolecular, negulation of biological/biochemical processes.	of fundament netabolic pat	al biochemical hways, and the		
CO3	Students will gain proficiency in basic laboratory techni biology, and be able to apply the scientific method to the p and hypothesis testing.	ques in both rocesses of ex	chemistry and sperimentation		
CO4	Students will be able to apply and effectively communic data analysis in both written and oral forums.	ate scientific	reasoning and		
CO5	Students will understand and practice the ethics surround	ing scientific	research.		

MIC09	0 Bacteriology & Virology	Theory	Credit 4(3+1)	
After su	After successful completion, this course enables students:			
CO1	To familiarize with basics of enzymes, their kinetics, mechan	nism of inhi	bition, enzyme	
	units and underlying principle of measurement of enzyme ad	ctivity.		
CO2	To learn the laboratory method of Isolation and purification	n of extrace	llular enzymes	
	and determination of Km and Vmax value for that enzyme.			
CO3	To understand sources of industrial important enzymes and the industrial and medical fields.	heir applicat	ions in various	
CO4	To understand the importance, principle and types of chron	natography	techniques and	
	their role in the study quantitave and qualitative analysis of	different bio	omolecules.	
CO 5	To develop the concept on principle and types of electrophone	retic technic	ues and their role	
	in the study of the biological system.			

MIC10	0 Microbial Growth, Enzymology & Bioinstrumentation Theory Credit 4(3+1)			
After su	After successful completion, this course enables students:			
CO1	1 To familiarize with basics of enzymes, their kinetics, mechanism of inhibition, enzyme units and underlying principle of measurement of enzyme activity.			
CO2	To learn the laboratory method of Isolation and purification of extracellular enzymes and determination of Km and Vmax value for that enzyme.			
CO3	To understand sources of industrial important enzymes and their applications in various industrial and medical fields.			
CO4	To understand the importance, principle and types of chromatography techniques and their role in the study quantitave and qualitative analysis of different biomolecules.			
C05	To develop the concept on principle and types of electrophoretic techniques and their role in the study of the biological system.			

MIC11	0 Pharmaceutical Microbiology Theory
Credit	4(3+1)
After s	uccessful completion, this course enables students:
CO1	To understand the anatomy, identification, growth factors of microorganisms
	which include bacteria, virus, and fungus and discuss the cultivation and
	identification of the microorganisms in the laboratory
CO2	To explain different methods of sterilization, its properties and applications
	in pharmaceutical microbiology
CO3	To get an insight view of the concepts and types of antibody, antigen -antibody
	reactions, vaccines, immunization programme and antibiotics.
CO4	To understand the identification of diseases by performing the diagnostic tests and
	estimation of potency of antibiotic by various microbial assay
CO5	To understand infectious diseases its history, pathogenesis, treatment and control
	methods.

SEMESTER II

MIC12	20 Microbial Genetics Theo	ry Credit 4(3+1)	
After su	successful completion, this course enables students:		
CO1	Students will learn the creative use of modern tools and techniques for manipulation and		
	analysis of genomic sequences.		
CO2	Students will learn the basic application of recombinant DNA technology in		
	biotechnological research.		
CO3	B Students will learn the process of cloning and expression	of gene and other techniques in	
	genetic engineering & Biotechnology.		
CO4	Students will learn DNA extraction from bacterial cell a	nd estimation of purity.	
CO5	5 Students will learn PCR assays and DNA manipulations	techniques. Explain the	
	application of modern biotechnological tools in cutting-	edge research.	

MIC13	0 Molecular Biology & Genetic Engg. Theory Cre	edit 4(3+1)	
After s	uccessful completion, this course enables students:		
CO1	Students will study the detailed structure of nucleic acids.		
CO2	Students will learn in detail the molecular processes such as replication, trans	scription	
	and translation. Describe the importance of genetic code and wobble hypothe	esis.	
CO3	Students will study mutagenesis. Students will learn Mutagenesis, Mutation and mutants		
	and their significance in microbial evolution		
CO4	Students will learn gene regulation methods in microbes.		
CO5	CO5 - Students will study Restriction enzymes- nomenclature, types, and ap	plications.	
	Students will learn application of DNA Modifying enzymes- alkaline phosphatase,		
	polynucleotide kinase and terminal deoxynucleotidyl transferase. Explain the	e process of	
	gene cloning and expression.		

M.Sc. Microbiology

MIC14	0 Environmental Microbiology	Theory	Credit 3(3+0)		
After s	After successful completion, this course enables students:				
CO1	To understand the basic principles of e	environmental micro	biology and distribution of		
	microorganisms in order to use them	as bioindicators o	f contamination and other		
	environmental impacts.				
CO2	Explain the systematic process for waste	water treatment and	microbiological analysis of		
	water.				
CO3	Students will understand various plant-microbe interactions especially rhizosphere,				
	phyllosphere, and mycorrhizae, and their applications such as biofertilizers and their				
	production techniques				
CO4	4 Students will be able to summarize the significance of the biorefinery concept and explain				
	how plant biomass can be converted to fermentable substrates and subsequently				
	microbially transformed into biochemica	als, biopolymers, and	l biofuels.		
CO5	Students will understand the important applications of microorganisms in various				
	processes such as bioremediation, biol	leaching, biosorptio	on, etc. for the solution of		
	different environmental problems.	-			
	-				

MIC15	0 Food & Dairy Microbiology Theory Credit 3(3+0)		
After s	After successful completion, this course enables students:		
CO1	To understand the principles of microorganisms during various food-processing and preservation steps.		
CO2	To comprehend the interactions between microorganisms, food, environment, and factors influencing their growth and survival.		
CO3	To get an insight view of the concepts and types of antibody, antigen -antibody reactions, vaccines, immunization programme and antibiotics.		
CO4	To understand the identification of diseases by performing the diagnostic tests and estimation of potency of antibiotic by various microbial assay		
CO5	To understand infectious diseases its history, pathogenesis, treatment and control methods.		

SEMESTER- III

MIC19	0 Medical Microbiology	Theory	Credit 3(3+0)
After s	After successful completion, this course enables students:		
CO1	Upon completion, students gained the knowledge of most common medically important		
	organism and the infections they cause.		
CO2	Different approaches, techniques and tools used to identify pathogens and control them.		
CO3	Diagnostic approaches for microbial pathogens.		
CO4	To understand eveloping efficient vaccines and antimicrobial susceptibility testing.	new drugs and	learning methods for
CO5	Develop competence to retrieve information from biological databases and integrate thi biological information with computational software's.		

MIC20	0 Immunology	Theory	Credit 3(3+0)
After successful completion, this course enables students:			
CO1	Be able to know the concept and funda	mentals of immunolog	у.
CO2	2 Be able to understand the concept of antigen, antibody and hypersensitivity reaction.		
CO3	Be able to understand the role of MI immunology.	IC molecule in graft	transplantation and cancer
CO4	Be able to perform the antigen antibody immuno-electrophoresis	y reaction including ag	glutination, precipitation,
CO5	Be able to understand technologies like	hybridoma.	
CO 6	Be able to know the concept and funda	mentals of immunolog	у.

cessful completion, this course enables students		
cessful completion; this course enables students	:	
Be able to understand the importance of soil microb	bes in influencing	soil fertility.
Be able to understand the mechanism of organic ma	tter decomposition	n by soil microbes
and their role in biogeochemical cycles.		
Be able to know about the role of plant associa	ted microbes in	the plant growth
promotion.		
Be able to understand the applications of various m	icroorganisms as	biofertilizer for
blant growth promotion.		
Be able to diagnose plant diseases caused by variou	is microbes and c	oncept of
	e able to understand the importance of soil microl e able to understand the mechanism of organic mand their role in biogeochemical cycles. e able to know about the role of plant associa comotion. e able to understand the applications of various m ant growth promotion. e able to diagnose plant diseases caused by variou opesticides to cure these diseases.	 e able to understand the importance of soil microbes in influencing e able to understand the mechanism of organic matter decomposition e able to know about the role of plant associated microbes in romotion. e able to understand the applications of various microorganisms as ant growth promotion. e able to diagnose plant diseases caused by various microbes and copesticides to cure these diseases.

MIC23	0 Mycology Theory Credit 4(4+0)		
After successful completion, this course enables students:			
CO1	Be able to demonstrate scientific literacy in major concepts and processes relative to		
	the major groups of fungi and fungus-like organisms		
CO2	Be able to locate and evaluate sources of scientific information on fungi and fungal-		
	like organisms.		
CO3	Be able to classify the important fungal organisms on the basis of reproduction,		
	taxonomy, macroscopic and microscopic morphology.		
CO4	Be able to understand the applications of various fungi in different sectors for starting		
	entrepreneurship		
CO5	Be able to understand economic importance of fungi		

M.Sc. Microbiology

MIC22	1 Fermentation Technology	Theory	Credit 4(4+0)
After su	After successful completion, this course enables students:		
CO1	Know about the design of bioreactors, factors affecting growth, strategies of upstream		
	processing and downstream processing, and design for microbial fermentation.		
CO2	Evaluate factors that contribute to the enhan	cement of cell and pro	duct formation
	during the fermentationprocess.		
CO3	To explore the different production approac	hes for industrial produced	ucts like organic acid,
	alcohol, enzymes, single-cell protein, fermented food, and dairy products.		
	etc.		
CO4	Get equipped with a theoretical and practical	l understanding of indu	ustrial microbiology.
CO5	To develop the concept for genetic improve	ment of industrially us	eful microbes as well
	as the process and role of enzyme immobili	zation in food industrie	es.

BIT38 2	2 IPR, Biosafety & Bioethics Theory Credit 3 (3+0)		
After successful completion, this course enables students:			
CO1	Be able to understand the Intellectual Property right (IPR) and different types of IPR.		
CO2	Be able to know the basics of patents and different types of patents.		
CO3	To get an insight into the Patent filing and Infringement		
CO4	Be able to understand the basics of biosafety and bioethics and its impact on all the		
	biological sciences and the quality of human life.		
CO5	Be able to understand the Introduction of bioethics and ethical conflicts in biological		
	sciences.		