

M.Sc. Biotechnology

MANDSAUR UNIVERSITY

FACULTY OF LIFE SCIENCES

M.Sc. Biotechnology

PEOs, POs, PSOs, COs

M.Sc. Biotechnology

About Faculty of Life Sciences:

The Faculty of Life Sciences (FLS) was established in the year 2016. It offers B.Sc. (Hons.) Biotechnology & Microbiology and M. Sc. Biotechnology & Microbiology courses. The intakes for bachelor programs are 30; while in postgraduate programs are 18. It offers top-class infrastructure, highly qualified and dedicated faculty members, and an excellent environment for academic and intellectual growth. FLS has international and national MoUs with various institutes and industries. The faculty has developed a modest academic infrastructure comprising of smart classrooms and Hi-tech laboratories with advanced instrumentation facilities to teach and conduct research in multifarious areas such as Molecular Diagnostics, Molecular Biology & Genetic Engineering, Microbiology, Biochemistry, Chemistry, Bioinformatics, Immunology, Food Science & Technology, Bioinstrumentation, Bioprocess technology and Biosafety. FLS endeavours not only to produce excellent academic results but also to produce entrepreneur and skilled professionals. The faculty has organized many workshops, seminars, staff/faculty/entrepreneur development programmes, adjunct and guest lectures sponsored by the industries related to Biotechnology. The faculty of life sciences is considered as a research hub by the Mandsaur University for guiding research scholar leading to Ph.D.

Programme Details:

Programme Name	Duration
M. Sc. Biotechnology	2 Years (Four Semesters)

Programme Structure:

Years	Odd Semester	Even Semester
First Year	Semester I	Semester II
Second Year	Semester III	Semester IV

M.Sc. Biotechnology

PEOs, POs, PSOs, COs:

	Program Educational Objectives (PEOs)	
The M. S	The M. Sc. Biotechnology program describe accomplishments that graduates are expected to attain	
the following:		
PEO1	Graduates will ascertain themselves in diverse fields of Biotech based industries as well	
	as allied set ups such as pharma, clinical diagnostics, agriculture, food, textiles etc.	
PEO2	Graduates will demonstrate their efficient skills in Research & Development in	
	Biotechnology field at the state as well as global forums.	
PEO3	Graduates will achieve comprehensive knowledge in the subject, acquire effectual	
	communication skills and be excellent academicians	
PEO4	Graduates are persuaded and stimulated to become entrepreneurs.	

	Program Outcomes (POs)
On suc	cessful completion of the M.Sc. Biotechnology program the students are expected to attain
the foll	owing:
PO1	Gain precise knowledge on a range of subjects related to the field of Biotechnology
PO2	Attain expertise pertaining to different branches of Biotechnology
PO3	Prepared to execute their learning in research fields.
PO4	Comprehend the inferences for the benefit of environment and society at large
PO5	Appreciate the ethical issues pertaining to the subject
PO6	Students will be able to create new biotechnological manufactured goods or processes by
	relating pioneering knowledge of various disciplines of biotechnology
PO7	Acquire skills to effectively carry out complex assignments and developments
	autonomously in diverse fields of biotechnology disciplines.
PO8	Exhibit skills to carry out the research schemes individually.
PO9	Widen the scope to materialize joint collaborations in multidisciplinary areas.
PO10	Increase the technical skills required for placements and research in various fields of
	Biotechnology.

	Program Specific Outcomes (PSOs)		
After th	e successful completion of M. Sc. Biotechnology program, the students are expected to attain		
the foll	owing:		
PSO1	Display the skill to devise, conduct experiments and examine information in the field of		
	Biotechnology		
PSO2	Exhibit the talent to work independently and carry out scientific research work in the field		
	of Biotechnology		
PSO3	Become skilled to work with suitable modern tools and procedures in genome modifications		
	for the benefit of humanity.		
PSO4	Attain knowledge of standards and principles in Biotechnology/product development/patent		
	writing		
PSO5	Will enlarge successful entrepreneurial skills, winning business opportunity		
PSO6	Attain skills to decide logical and technical issues in biotech-based industries.		

M.Sc. Biotechnology

SEMESTER-I

BIT07 0	Biochemistry and Metabolism Theory Credit 4 (4+0)
After s	uccessful completion, this course enables students:
CO1	Understanding the laws of thermodynamics, concepts of entropy, enthalpy and free energy changes and their application to biological systems and various biochemical studies and reactions.
CO2	Students will be able to demonstrate an understanding of fundamental biochemical principles, such as the structure/function of bimolecular, metabolic pathways, and the regulation of biological/biochemical processes.
CO3	Students will gain proficiency in basic laboratory techniques in both chemistry and biology, and be able to apply the scientific method to the processes of experimentation and hypothesis testing.
CO4	Students will be able to apply and effectively communicate scientific reasoning and data analysis in both written and oral forums.
CO5	Students will understand and practice the ethics surrounding scientific research.

BIT08	Functional Cell Biology	Theory	Credit 4 (4+0)
After s	uccessful completion, this course enables students:		
CO1	Be able to understand about the functions of differe	ent cellular compo	onents and cellular
	level.		
CO2	Be able to understand about the role of cytoskeleton is	in cell shape, supp	ort and movement
	inside the cell.		
CO3	Be able to interpret the way of transport of different mo	olecules across the	plasma membrane.
CO4	Be able to interpret about the relationship between	neighboring cells	s and extracellular
	environment as well as response of different cells	against different	type of signaling
	molecules.		
CO5	Be able to get inside the molecular event of cell cycl	le and cancer to u	nderstand possible
	mechanism and cure.		

BIT09 0	Microbiology	Theory	Credit 3 (3+0)
After su	accessful completion, this course enables students:		
CO1	To understand the principle and applications of impo	ortant instruments	s (biological safety
	cabinets, autoclave, incubator, hot air oven, light microscope, pH meter) used in the		neter) used in the
	microbiology laboratory. Students also learn the basics of preparing common microbial		
	media used for isolation and maintenance of microbial isolates.		
CO2	To get an insight into the laboratory techniques fo	r the isolation as	nd enumeration of
	microorganisms from different environmental spheres	like soil, water an	nd air.
CO3	Students also learn the basics of isolating bacteria in pr	ure cultures by str	eaking method and
	determination of bacterial growth curve. To understand general bacteriology and microbial		
	techniques for isolation of pure cultures of bacteria and fungi.		
CO4	To understand the basic microbial structure and fu	unction and stud	y the comparative
	characteristics of prokaryotes and eukaryotes and the s	structural similarit	ties and differences
	among various physiological groups of bacteria/archae	ea.	
CO5	To master aseptic techniques and be able to perform	routine culture ha	ndling tasks safely
	and effectively.		

BIT10	Enzymology and Bioinstrumentation	Theory	Credit 3 (3+0)
After s	uccessful completion, this course enables students:		
CO1	To have the concept of different terminologies in underst	anding enzymes as	well as their historical
	perspective.		
CO2	To familiarize with basics of enzymes, their kinetics, inh	nibition and their a	applications in various
	fields.		
CO3	The course provides the basic understanding of ena	zyme classification	n, nomenclature and
	synthesis.		
CO4	The course highlights the concepts of Enzyme kinetics	and mechanism o	f inhibition, units and
	underlying principle of measurement of enzyme activity.		
CO5	The students can earn the knowledge of different applica	itions of enzymes i	n various industry and
	medical field.		

M.Sc. Biotechnology

SEMESTER-II

BIT11 (Molecular Biology	Theory	Credit 4 (4+0)
After s	uccessful completion, this course enables students:		
CO1	Students will be able understand the application of	renewable source	es and explain their
	conversion process to meet the energy demand.		
CO2	Clarify application of microorganisms in varied field	s of environmenta	al biotechnology like
	bioremediation, biofertilizers and waste water treatm		Ü
CO3	Describe role of microorganism in recycling soil nutr	ients, biodegradat	ion of complex plant
	polymers, sustaining and improving plant growth th	0 1	
	production of plant growth promoting substances and	l inhibiting patho	gens
CO4	Familiarize students with global environmental pro	blem and their s	ide effects on living
	organisms.		
CO5	Students will be able to understand the concept of sol	id waste as source	e of energy and apply
	their knowledge for converting them into a useful pro-		J. 11 •

BIT120	Genetic Engineering	Theory	Credit 4 (4+0)
After su	accessful completion, this course enables students:		
CO1	Students will be able understand the Cloning and Expre	ssion strategies	including Vectors -
	plasmid, bacteriophage, viral, cosmids, Ti plasmid,	Yeast; Express	ion of recombinant
	proteins.		
CO2	Students able to understand Molecular techniques inc	luding polyme	rase chain reaction;
	DNA Sequencing; In-situ hybridization; Random ampli	fied polymorph	nic DNA, restriction
	fragment length polymorphism.		
CO3	Be able to explore construction of Library and Purificat	ion of recombin	nant proteins.
CO4	Familiarize students with gene transfer and Selection of	Recombinant	Clones techniques.
CO5	Students will be able to understand the concept of solid v	waste as source	of energy and apply
	their knowledge for converting them into a useful produ	ıct.	

BIT13 0	Environmental Biotechnology Theory Credit 3 (3+0)
After su	uccessful completion, this course enables students:
CO1	Students will be able understand the application of renewable sources and explain their
	conversion process to meet the energy demand.
CO2	Clarify application of microorganisms in varied fields of environmental biotechnology like
	bioremediation, biofertilizers and waste water treatment, organic waste management.
CO3	Describe role of microorganism in recycling soil nutrients, biodegradation of complex plant
	polymers, sustaining and improving plant growth through improving nutrient availability,
	production of plant growth promoting substances and inhibiting pathogens
CO4	Familiarize students with global environmental problem and their side effects on living
	organisms.
CO5	Students will be able to understand the concept of solid waste as source of energy and apply
	their knowledge for converting them into a useful product.

BIT140	Bioprocess Engineering	Theory	Credit 3 (3+0)
After su	accessful completion, this course enables students:		
CO1	To understand biological and kinetic concepts underlying	g bioprocesses eng	ineering
CO2	To explain procedures for the design and control of bioreactors to get relevant experience for		
	industries especially in Production unit.		
CO3	Understand and attain essential skills for carrying out ba	sic upstream proce	ssing process including
	the requirements of scaling up.		
CO4	To apply the bioprocess engineering concepts in different	ent industries for t	he benefit of mankind
	primarily in Biopharma, Food processing and agriculture	e-based industries.	
CO5	To understand biological and kinetic concepts underlyin	g bioprocesses eng	ineering

M.Sc. Biotechnology

SEMESTER-III

BIT35	O Applied Biotechnology The	eory	Credit 3 (3+0)
After s	After successful completion, this course enables students:		
CO1	Be able to know the concept and fundamentals of applied bio	technology	•
CO2	Be able to understand the concept of nanotechnology, post-harvest technology and dairy		hnology and dairy
	technology.		
CO3	Be able to understand the technology in the food industry.		
CO4	Be able to understand the basics of startup mission s		
CO5	Be able to understand to synthesis nonmaterial.		

BIT360) Immunology	Theory	Credit 3 (3+0)
After s	After successful completion, this course enables students:		
CO1	Be able to know the concept and fundamentals of immunol	ogy.	
CO2	Be able to understand the concept of antigen, antibody and	hypersensit	ivity reaction.
CO3	Be able to understand the role of MHC molecule in graft transplantation and cancer		
	immunology.		
CO4	Be able to perform the antigen antibody reaction includi-	ng agglutin	ation, precipitation,
	immuno-electrophoresis		
CO5	Be able to understand technologies like hybridoma.		

BIT37	Plant and Agricultural Biotechnology Theory Credit 3 (3+0)		
After s	After successful completion, this course enables students:		
CO1	Be able to apply different plant tissue culture techniques for the plant regeneration		
CO2	Be able to explore greenhouse and commercialization of plant tissue culture products		
CO3	Be able to understand the utility of PGPR and genetic engineering technique for quality		
	production		
CO4	Be able to understand the selection of trait of interest using molecular marker		
CO5	Be able to understand the production of useful products using metabolic engineering and		
	importance of IPR		

BIT390	Biostatistics and Bioinformatics	Theory	Credit 3 (3+0)
After si	uccessful completion, this course enables students:		
CO1	To develop an understanding of basic theory of computation	nal tools to solv	e biological problems.
CO2	To gain working knowledge of these computational tools and methods in order to validate and		
	facilitate wet lab work.		
CO3	To appreciate, apply & develop relevant algorithms for investigating specific contemporary		
	biological questions across scientific community.		
CO4	Critically carry out the biological data analysis and interpret	results using adv	vanced statistical tools
	& methods.		
CO5	To develop an understanding of basic theory of computation	nal tools to solv	e biological problems.

BIT38	1 Animal Biotechnology	Theory	Credit 3 (3+0)
After s	uccessful completion, this course enables students:		
CO1	Students will be able to describe the principle and techniques used in animal biotechnology		
	and different cell culture media and their preparation n	nethods.	
CO2	Students will be able to identify the cell characterizati	on parameters an	d analyze causes of
	contamination.		
CO3	To familiarize with the techniques of animal cell cultur	re., mechanisms o	of gene transfer, and
	various molecular Marker-assisted methods in improve	ement of live stoc	eks.
CO4	Students will be able to understand Gene transfer meth	ods for mammal	an cells and animal
	transgenics.		
CO5	Students will acquire the knowledge of ethics and safety	y issues related to	animal cell culture.

BIT382	2 IPR, Biosafety & Bioethics Theory Credit 3 (3+0)		
After s	After successful completion, this course enables students:		
CO1	Be able to understand the Intellectual Property right (IPR) and different types of IPR.		
CO2	Be able to know the basics of patents and different types of patents.		
CO3	To get an insight into the Patent filing and Infringement		
CO4	Be able to understand the basics of biosafety and bioethics and its impact on all the		
	biological sciences and the quality of human life.		
CO5	Be able to understand the Introduction of bioethics and ethical conflicts in biological		
	sciences.		