B.Sc. (Hons.) Microbiology

MANDSAUR UNIVERSITY

FACULTY OF LIFE SCIENCES

B.Sc. (Hons.) Microbiology

PEOs, POs, PSOs, COs

B.Sc. (Hons.) Microbiology

About Faculty of Life Sciences:

The Faculty of Life Sciences (FLS) was established in the year 2016. It offers B.Sc. (Hons.) Biotechnology & Microbiology and M. Sc. Biotechnology & Microbiology courses. The intakes for bachelor programs are 30; while in postgraduate programs are 18. It offers top-class infrastructure, highly qualified and dedicated faculty members, and an excellent environment for academic and intellectual growth. FLS has international and national MoUs with various institutes and industries. The faculty has developed a modest academic infrastructure comprising of smart classrooms and Hi-tech laboratories with advanced instrumentation facilities to teach and conduct research in multifarious areas such as Molecular Diagnostics, Molecular Biology & Genetic Engineering, Microbiology, Biochemistry, Chemistry, Bioinformatics, Immunology, Food Science & Technology, Bioinstrumentation, Bioprocess technology and Biosafety. FLS endeavours not only to produce excellent academic results but also to produce entrepreneur and skilled professionals. The faculty has organized many workshops, seminars, staff/faculty/entrepreneur development programmes, adjunct and guest lectures sponsored by the industries related to Biotechnology. The faculty of life sciences is considered as a research hub by the Mandsaur University for guiding research scholar leading to Ph.D.

Programme Details:

Programme Name	Duration	
B. Sc. (Hons.) Microbiology	3 Years (Six Semesters)	

Programme Structure:

Years Odd Semester Even Semester		Even Semester
First Year	Semester I	Semester II
Second Year	Semester III	Semester IV
First Year	Semester V	Semester VI

B.Sc. (Hons.) Microbiology

PEOs, POs, PSOs, COs:

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)		
The B.S	The B.Sc. (Honours) Microbiology program describe accomplishments that graduates are		
expected	l to attain the following:		
PEO1	Dynamic and primary investigator		
PEO2	Ingenious educationalist		
PEO3	Managerial / administrative official		
PEO4	Headship brilliance		
PEO5	Knowledgeable proficiency in various awarenesss		
PEO6	Businessperson		
PEO7	Principal microbiologist in scientific analytical and value control sector		

	PROGRAMME OUTCOMES (POs)		
On suc	cessful completion of the B.Sc. (Honours) Microbiology programme the students are		
expecte	ed to attain the following:		
PO1	Obtain suitability for higher education, research / technical and administrative		
	appointment in government and private sectors.		
PO2	Accomplish aptitude to be positioned in numerous Microbiological / Biotechnological		
	industries.		
PO3	Attain practical knowledge to become a businessperson by institutional training /		
	internship.		
PO4	Comprehend the vital role of knowledge in life.		
PO5	Apprise and create steadiness of nature and in fact form a fit environment with the		
	knowledge of Microbiology.		
PO6	Obtain abilities essential to accomplish the personal, civil and social responsibilities.		
PO7	Enhance information in ethical thinking, quantitative analytical skills and its application to		
	the issues in society.		
PO8	Acquire knowledge on harmful and beneficial role played by microbes in human health.		
PO9	Recognize the impact of gene technology in microbiology for societal development.		
PO10	Comprehend the importance of up to date technologies in microbiological applications &		
	research data management.		

	PROGRAMME SPECIFIC OUTCOMES (PSOs)
After the	e successful completion of B.Sc. (Honours) in Microbiology, the students are expected to
attain th	e following:
PSO1	To segregate and find out the various types of microorganisms including bacteria, fungi and algae.
PSO2	To get accustomed to the latest information about the nomenclatural cataloguing of microorganisms.
PSO3	To attain domain knowledge about recent microbial practices and bioinstrumentation which make the learners skilled to be placed in various Microbiological / Biotechnological industries.
PSO4	To achieve hands-on exposure during the inhouse training.
PSO5	To reap the benefits of the knowledge gained through clinical investigation and diagnosis of various infectious diseases.
PSO6	To attain knowledge on health care, inhibition and control of various pathogenic microbes which cause periodic occurrences of epidemics and pandemics etc.
PSO7	To comprehend hypothetical and practical exposure in the allied subjects Biostatistics and Computer Applications; Biochemistry in addition to the core course subjects in the field of Microbiology.

B.Sc. (Hons.) Microbiology SEMESTER-I

MIC01	0 Introduction to Microbiology & Microbial Diversity Theory Credit 4(3+1)		
After s	After successful completion, this course enables students:		
CO1	To understand the basics of microbiology and to learn the systemic classification		
	of microorganisms.		
CO2	To understand the general characteristics of acellular microorganisms.		
CO3	To understand the general characteristics of algae.		
CO4	To understand the general characteristics of fungi.		
CO5	To understand the general characteristics of protozoan.		

MIC02) Bacteriology	Theory	Credit 4(3+1)
After su	After successful completion, this course enables students:		
CO1	Be able to understand detailed structure of Gram-pe	ositive and G	ram-negative.
CO2	D2 Be able to know about cultivation, maintenance and preservation/stocking of		
	pure cultures.		
CO3	Be able to understand about Growth, nutrition and reproduction in bacteria.		
CO4	Be able to understand the Bacterial systematics aim systematics and taxonomy, concept of species	and principle	es of classification,
CO5	Be able to understand general characteristics, phyl archaeal and eubacterial groups.	ogenetic over	view of important

MIC03	0 Environmental Studies Theory Credit 4(3+1)
After su	accessful completion, this course enables students:
CO1	Be able to understand structure and function of a) Forest ecosystem, b) Grassland
	ecosystem, c) Desert ecosystem, d) Aquatic ecosystems (ponds, streams, lakes,
	rivers, oceans, estuaries)
CO2	Be able to know Renewable and Non-renewable Resources.
CO3	Be able to understand threats to biodiversity; Conservation of biodiversity: and
	Ecosystem and biodiversity services.
CO4	Be able to understand the Environmental Pollution, Policies and Practices including
	Montreal and Kyoto protocols and Convention on Biological Diversity
	(CBD). Nature reserves, tribal populations and rights, and human wildlife conflicts
	in Indian context.
CO5	Be able to know about human population growth, impacts on environment, human
	health and welfare, resettlement and rehabilitation of project affected persons.

MIC04	Introduction & Scope of Microbiology Theory Credit 4(3+1)
After su	uccessful completion, this course enables students:
CO1	To understand the basics of development and history of microbiology and to
	learn the systemic classification of microorganisms.
CO2	To understand the microscopy and different types of sterilization methods in
	microbiology.
CO3	To understand the different microbes in relation to human health and to
	understand the basics of environmental microbiology.
CO4	To understand the importance of microorganisms in food and dairy microbiology.
CO5	To understand the concept of fermentation and its industrial applications.

B.Sc. (Hons.) Microbiology

SEMESTER-II

MIC05	50 Biochemistry	Theory	Credit 4(3+1)
After su	After successful completion, this course enables students:		
CO1	Be able to understand structure and function of me	onosacchari	de, disaccharide
	and polysaccharide.		
CO2	Be able to know about structure, properties and fur	nctions of e	ssential fatty acids,
	Triacylglycerols, lipid.		
CO3	Be able to understand about functions of proteins, Level of organization of		
	proteins, primary, secondary (alpha helix and be	ta pleated s	sheet), tertiary and
	quaternary Forces holding the polypeptide together	er.	
CO4	Be able to understand the Enzyme kinetics, significant	icance of hy	merbolic double
	reciprocal plots of enzyme activity and Km.	01 11)	persone, couote
CO5	Be able to know about Classification, function and	d sources of	Vitamins.

MIC06	0 Virology	Theory	Credit 4(3+1)	
After su	After successful completion, this course enables students:			
CO1	Be able to understand about nature and properties	of viruses.		
CO2	Be able to know about diversity, classification	of Bacterio	phages one step	
	multiplication curve, lytic and lysogenic phages (la	ımbda phage	e),	
CO3	Be able to understand about viral transmission, Sa	lient feature	s of viral nucleic	
	acids and Replication.			
CO4	Be able to understand the concepts of oncogenes, p	oroto-oncoge	enes and tumor	
	suppressor genes.	_		
CO5	Be able to gain better understanding of antiviral co	mpounds an	d their mode of	
	action, Interferon and their mode of action, Genera	l principles	of viral	
	vaccination.			

MIC07	2 Industrial & Food Microbiology Theory Credit 4(3+1)
After su	uccessful completion, this course enables students:
CO1	To understand the concept of fermentation and its industrial applications.
CO2	To understand the preservation and maintenance methods of industrially
	important strains of microbes in microbiology.
CO3	To understand the different downstream processing and production of
	industrially important enzymes.
CO4	To understand the parameters that affect microbial growth in food, and to learn
	about food infection and intoxications.
CO5	To understand the principles and methods of food preservation and food sanitation

B.Sc. (Hons.) Microbiology

SEMESTER-III

MIC25	Microbial Physiology and Metabolism Theory Credit 3(3+0)	
After su	accessful completion, this course enables students:	
CO1	Be able to understand microbial growth in response to nutrition and energy:	
	Autotroph, heterotrophy Chemolithoautotroph, Chemolithoheterotroph,	
	Chemoheterotroph, Chemolithotroph, photolithoautotroph and	
	Photoorganoheterotroph.	
CO2	Be able to interpret about the passive and facilitated diffusion, Primary and	
	secondary active transport, concept of uniport, symport and antiport.	
CO3	Be able to understand concept of aerobic respiration. Central metabolic	
	pathways: EMP, ED, Pentose phosphate pathway and TCA cycle. Electron	
	transport chain	
CO4	Be able to understand the role of anaerobic respiration and fermentation. Anaerobic	
	1	
	respiration with special reference to dissimilatory nitrate reduction	
CO5	Be able to understand chemolithotrophic and phototrophic Metabolism.	

MIC26	Cell & Molecular Biology	Theory	Credit 3(3+0)
After su	accessful completion, this course enables students	3:	
CO1	Be able to understand various aspects of structure a	and organizat	ion of cell.
CO2	Be able to know various concepts related to protein	glycosylation	, protein sorting
	and export.		
CO3	Be able to understand various processes of replication involving mechanism of		
	DNA replication in prokaryote and eukaryotes.		
CO4	Be able to understand the role and process of transc Eukaryotes.	cription in Pro	okaryotes and
CO5	Be able to know about regulation of gene expression	on in prokary	otes and
	Eukaryotes.	r	

MIC27	Chemistry I	Theory	Credit 4(4+0)
After su	accessful completion, this course enables studen	nts:	
CO1	The student will be able to understand rules	for filling electron	s in orbital's &
	electronic configuration of atoms.		
CO2	The student will understand methods of prepararomatic compounds.	ation and propertie	s of aliphatic and
CO3	The student will understand about various cova	alent and non-cova	lent interaction
	found in molecules.		
CO4	The student will understand the various physical	properties of s p, d	, f block elements.
CO5	The student will learn the various physical prope	rties of noble gases	

MIC29	Microbes in Environment	Theory	Credit 4(4+0)
After su	accessful completion, this course enables students:		
CO1	To understand the different types of microorganisms	along with t	heir habitat and
	to understand about extremophiles.		
CO2	To understand the microbe interactions and to lear	n about diff	erent microbe-
	Plant interaction.		
CO3	To understand the different biogeochemical and nutr	ient cycles.	
CO4	To understand the management of different types of the sewage and its disposal methods.	solid waste a	and to understand
CO5	To understand the principles and degradation of com	mon pesticio	les and to
	understand the bioremediation.		

MIC29	2 Medical Microbiology & Immunology Theory Credit 4(4+0)
After si	uccessful completion, this course enables students:
CO1	The student will be able to identify normal microflora of the human body and
	host pathogen interaction
CO2	The student will be able to identify common infectious agents and the diseases
	that they cause.
CO3	The student will be able to assess treatment strategies including the appropriate
	use of antimicrobial agents and common mechanisms of antimicrobial action and
	resistance.
CO4	Understand the overall organization of the immune system.
CO5	Conceptualize how the collection of individual clones of lymphocytes arises from
	rearrangement within two genetic loci: the Ig gene in B cells and the antigen
	receptor in T cells.
CO6	To make them understand the salient features of antigen antibody reaction & its
	uses in diagnostics and various other studies.

MIC281	Microbial Quality Control in food & Pharmaceutical Industries Theory Credit 2(2+0)	
After su	After successful completion, this course enables students:	
CO1	Be able to understand various aspects of Good laboratory practices, Good microbiological	
	practices.	
CO2	Be able to interpret about culture and microscopic methods including standard plate count,	
	Most probable numbers, Direct microscopic counts, Biochemical and immunological methods.	
CO3	Be able to diagnose microbial pathogens through microscopic study and differential	
	culturing including enrichment culture technique.	
CO4	Be able to understand the quality test for milk.	
CO5	Be able to know about - principles, flow diagrams, limitations of Hazard analysis of critical	
	control point (HACCP).	

MIC282	Microbial Diagnosis in Health Clinics Theory Credit 2(2+0)
After suc	ccessful completion, this course enables students:
CO1	Be able to diagnose microbial diseases of human body through symptoms
CO2	Be able to interpret about the type of clinical sample required and its collection
	for disease diagnosis
CO3	Be able to diagnose microbial pathogens through microscopic study and
	differential culturing
CO4	Be able to understand the role of serological and molecular method in diagnosis
CO5	Be able to apply appropriate technique for rapid detection of microbial diseases

MIC28	3 Biofertilizers & Biopesticides	Theory	Credit 2(2+0)
After su	accessful completion, this course enables students:		
CO1	Be able to understand various aspects of the microb	es used as bi	ofertilizers for
	various crop plants and their advantages over chemi-	ical fertilizer	S
CO2	Be able to interpret about the type of Non - Symbio	tic Nitrogen	Fixers.
CO3	Be able to know about various concepts related to Phosphate solubilizing		
	microbes.		
CO4	Be able to understand the role of mycorrhizae and a	ssociated pla	unts
CO5	Be able to know about microbes used as bioinsectic	ides and thei	r advantages over
	synthetic pesticides.		

B.Sc. (Hons.) Microbiology

SEMESTER-IV

MIC30	Microbial Genetics	Theory	Credit 3(3+0)
After su	After successful completion, this course enables students:		
CO1	To understand the genome organization in prokary	otic and euka	ryotic cells.
CO2	To understand the plasmids and its types.		
CO3	To understand the different mechanisms of genetic	exchange.	
CO4	To understand the structure of phage and its genetic	ics	
CO5	To understand the different prokaryotic and eukary	otic transpos	able elements.

MIC31	0 Microbes in Sustainable Agriculture and Development Theory Credit 3(3+0)	
After su	After successful completion, this course enables students:	
CO1	Be able to understand about the importance of soil microbes in influencing soil	
	fertility.	
CO2	Be able to understand the mechanism of organic matter decomposition by soil	
	microbes and their role in biogeochemical cycles.	
CO3	Be able to know about the role of microbes as biocontrol agent against plant	
	diseases.	
CO4	Be able to understand the applications of various microorganisms as biofertilizer for	
	plant growth promotion.	
CO5	Be able to know about the application of agriculture biotechnology through secondary	
	metabolite products and GM crops.	

MIC32	0 Chemistry II	Theory	Credit 4(4+0)
After su	accessful completion, this course enables studen	ts:	
CO1	Be able to understand the various types of types of	of isomerism.	
CO2	Be able to know various concepts of Valence I theory and MOT.	Bond theory, Hy	bridization, VSEPR
CO3	Be able to understand various properties including property of transition element.	luding oxidation	state, magnetic
CO4	Be able to understand about types of thermodynamics	mic processes, &	their applications in
	daily life.		
CO5	Be able to discuss the important aspects of spectr	oscopy.	

MIC33	1 Food Fermentation Techniques Theory Credit 2(2+0)	
After s	uccessful completion, this course enables students:	
CO1	To understand the advantages, types, and beneficial health applications of	
	fermented food.	
CO2	To provide knowledge about industrially important microorganisms and the	
	production process of various dairy and milk products.	
CO3	To provide knowledge about microorganisms used in the production of grain-	
	based fermented foods and their production process.	
CO4	To learn about the microorganisms used in the production of Pickles, Sauerkraut,	
	and the production process.	
CO5	To understand the types, and microorganisms involved and the processing of	
	fermented meat and fish.	

MIC33	2 Management of Human Microbial Disease Theory Credit 2(2+0)				
After si	After successful completion, this course enables students:				
CO1	Be able to understand the Categories of Human diseases.				
CO2	To get an insight into the different types of Microbial diseases				
CO3	Be able to know the different kinds of therapeutics of bacterial diseases				
CO4	CO4 Be able to know the Treatment using antiviral agents.				
CO5	To get an insight into the prevention of microbial diseases.				

MIC33	3 Microbiological Analysis of Air & Water	Theory	Credit 2(2+0)		
After su	After successful completion, this course enables students:				
CO1	To understand the aero microbiology and microbes	present in air.			
CO2	To understand the different sample collection from air and its analysis.				
CO3					
CO4	To understand the microbiology of water.				
CO5	To understand the different control measures of wat	erborne micro	obes.		

MIC34	MIC341 Genetic Engg. & Biotechnology Theory Credit 4(4+0)				
After su	After successful completion, this course enables students:				
CO1	Students will study Restriction enzymes- nomenclature, types, and applications.				
	Students will learn application of DNA Modifying enzymes- alkaline				
	phosphatase, polynucleotide kinase and terminal deoxynucleotidyl transferas	se.			
CO2	Students will study the process of gene cloning and expression. Students will				
	study How to construct Gene libraries and Gene delivery.				
CO3	Students will learn types of gene delivery & Transcription. Perform PCR				
	amplification of DNA sample. Describe blue/white screening and antibiotic selection methods of cloning.				
CO4	Students will study probe and hybridization technique and learn the proc	ess of			
	various hybridization techniques. Review various applications of genetic				
	engineering				
CO5	Students will able to Isolate DNA from cell and Perform agarose gel				
	electrophoresis. Explain the process of constructing genomic and c-DNA lib	rary,			
	Differentiate various DNA sequencing methods.				

MIC34	42 Instrumentation and Biotechniques Theory C	Credit 4(4+0)			
After si	After successful completion, this course enables students:				
CO1	CO1 To understand the importance, principle and types of microscopy techniques.				
CO2	To understand the importance, principle and types of chromatography and their role in the study of biological system.	y techniques			
CO3	To develop the knowledge on principle and types of electrophoretic techniques and their role in the study of biological system.				
CO4	To acquire knowledge on spectrophotometric techniques, their p applications.	orinciples and			
CO5	To get an insight in to the principle and types of centrifugation technic their role in the study of biological system.	iques and			

B.Sc. (Hons.) Microbiology SEMESTER-V

MIC35	0 Microbial Biotechnology Theory Credit 3(3+0)				
After su	After successful completion, this course enables students:				
CO1	To understand the concept of microbial biotechnology and its applications in				
	different fields.				
CO2	To understand the different recombinant microbial production processes in pharmaceutical industries.				
CO3	To understand the applications of microbes in bio-transformations of sterols and steroids.				
CO4	To understand the purification process of different microbial products.				
CO5	To understand the different microbes for bioenergy production and their				
	relationship with environment.				

MIC36	0 Recombinant DNA Technology Theory Credit 4(4+0)				
After su	After successful completion, this course enables students:				
CO1	Students will study Restriction enzymes- nomenclature, types, and applications.				
	Students will learn application of DNA Modifying enzymes- alkaline				
	phosphatase, polynucleotide kinase and terminal deoxynucleotidyl transferase.				
CO2	Students will study the process of gene cloning and expression. Students will				
	study How to construct Gene libraries and Gene delivery.				
CO3	Students will learn types of gene delivery & Transcription. Perform PCR				
	amplification of DNA sample. Describe blue/white screening and antibiotic				
	selection methods of cloning.				
CO4	Students will study the process of various hybridization techniques. Describe the				
	principle of gene silencing, gene knockouts and gene therapy. Review various				
	applications of genetic engineering				
CO5	Students will able to Isolate DNA from cell and Perform agarose gel				
	electrophoresis. Explain the process of constructing genomic and c-DNA library,				
	Differentiate various DNA sequencing methods				
CO6	Students will study probe and hybridization technique and learn the process of				
	various hybridization techniques				

MIC37	0 Industrial Chemistry Theory Credit 4(4+0)			
After si	After successful completion, this course enables students:			
CO1	The knowledge acquired knowledge of design and development of drugs.			
CO2	The student able to understand industrial uses of catalysis reactions.			
CO3	Students will be able to understand various types of distillation processes.			
CO4	4 Students are able to identify and understand about adulterants in common food items.			
CO5	O5 Students able to understand about green chemistry and designing a Green Synthese			
using principles of green chemistry.				

MIC381	Biostatistics	Theory	Credit 3(3+0)		
After su	After successful completion, this course enables students:				
CO1	CO1 Basic understanding of Moments, Skewness, central tendency kurtosis by				
	moments.				
CO2	Well versed in the concepts Probability and Probability Distribution along with its				
	application				
CO3	3 Understand the Statistical Quality Control, Correlation and regression analysis.				
CO4	Good understanding and analytical knowledge in applying & testing of Hypothesis				
	and Analysis of variance.				
CO5	Basic understanding of Moments, Skewness, centra	al tendency ku	irtosis by		
	moments.				

MIC38	2 Advances in Microbiology	Theory	Credit 3(3+0)	
After si	accessful completion, this course enables students:			
CO1	To understand the evolution of Microbial Genomes.			
CO2	To understand the brief history and development of	metagenomi	cs.	
CO3	To understand the molecular Basis of Plant-Microbe Interactions.			
CO4	To understand the Secretion system of animal Pathogens and role and formation of			
	biofilms.			
CO5	To understand the networking in biological systems	, quorum sen	sing in bacteria,	
	future implications of synthetic biology with respect	to bacteria a	and viruses.	

B.Sc. (Hons.) Microbiology

SEMESTER VI

MIC40	Medical Microbiology	Theory	Credit 4(4+0)		
After su	After successful completion, this course enables students:				
CO1	CO1 To understand the normal microflora of different parts of the human body.				
CO2	To have knowledge on different cell culture media and their preparation methods.				
CO3	To gain knowledge on various bacterial and viral diseases.				
CO4	To understand the different protozoan and fungal diseases and their causative				
	agents.				
CO5	To get an insight into the various antimicrobial, antifungal agents and their mode				
	of action.				

MIC41	0 Immunology	Theory	Credit 3(3+0)
After su	After successful completion, this course enables students:		
CO1	CO1 Be able to understand the various aspects of physical and chemical structure of		
	DNA; Types of DNA: A, B and Z; RNA structure and	functions;	Classes of
	RNA: mRNA, rRNA, tRNA and hnRNA.		
CO2	Be able to know various phase of DNA replication.		
CO3	Be able to understand principles underlying types and i	mechanism	of DNA repair
CO4	Be able to understand fermentation process and downs	stream proc	essing.
CO5	Be able to discuss the important aspects of transcription	on.	

MIC42	0 Plant Pathology	Theory	Credit 4(4+0)		
After su	After successful completion, this course enables students:				
CO1	Be able to understand the basics and history of plant p	atholog	gy.		
CO2	Be able to know the different types of stages involved diseases and its epidemiology.	l in the o	development of Plant		
CO3	To get an insight into the microbial pathology pathogenesis	and fa	ctors involved in		
CO4	Be able to understand about the interaction occurs of diseases and plants internal defence mechanism.	during o	development of plant		
CO5	Be able to understand the concept of physical, biological plant pathogen.	cal and	cultural control of		

MIC431	Bioinformatics	Theory	Credit 3(3+0)
After successful completion, this course enables students:			
CO1	Understanding and remembering about biological databases and its application		
	in various sectors.		
CO2	Remembering, understanding and creating sequence appropriate algorithms.	alignment b	y applying
CO3	CO3 Creating phylogenetic trees by applying and ev	aluating suit	able methods.
CO4	Analyze, apply, and create protein structure and peri	form drug de	signing.
CO5	Understanding and remembering about biological da	atabases and	its application in
	various sectors.		

MIC43	2 Biosafety and Intellectual Property Rights Theory Credit 3(3+0)		
After successful completion, this course enables students:			
CO1	To understand the fundamentals of bioethics and ethical issues related to		
	molecular technologies.		
CO2	To have the concept on the ethical issues concerned with clinical trials, medical		
	errors, negligence etc.		
CO3	To understand the safety issues and ethical use of animals in the laboratory.		
CO4	To get an insight into the good laboratory practices in different biological laboratories.		
CO5	To get an insight in to the guidelines and precautions on using radioisotopes in		
	laboratory practices.		