

B.Sc. (Hons.) Biotechnology

MANDSAUR UNIVERSITY

FACULTY OF LIFE SCIENCES

B.Sc. (Hons.) Biotechnology

PEOs, POs, PSOs, COs

B.Sc. (Hons.) Biotechnology

About Faculty of Life Sciences:

The Faculty of Life Sciences (FLS) was established in the year 2016. It offers B.Sc. (Hons.) Biotechnology & Microbiology and M. Sc. Biotechnology & Microbiology courses. The intakes for bachelor programs are 30; while in postgraduate programs are 18. It offers top-class infrastructure, highly qualified and dedicated faculty members, and an excellent environment for academic and intellectual growth. FLS has international and national MoUs with various institutes and industries. The faculty has developed a modest academic infrastructure comprising of smart classrooms and Hi-tech laboratories with advanced instrumentation facilities to teach and conduct research in multifarious areas such as Molecular Diagnostics, Molecular Biology & Genetic Engineering, Microbiology, Biochemistry, Chemistry, Bioinformatics, Immunology, Food Science & Technology, Bioinstrumentation, Bioprocess technology and Biosafety. FLS endeavours not only to produce excellent academic results but also to produce entrepreneur and skilled professionals. The faculty has organized many workshops, seminars, staff/faculty/entrepreneur development programmes, adjunct and guest lectures sponsored by the industries related to Biotechnology. The faculty of life sciences is considered as a research hub by the Mandsaur University for guiding research scholar leading to Ph.D.

Programme Details:

Programme Name	Duration
B. Sc. (Hons.) Biotechnology	3 Years (Six Semesters)

Years	Odd Semester	Even Semester
First Year	Semester I	Semester II
Second Year	Semester III	Semester IV
First Year	Semester V	Semester VI

Programme Structure:

B.Sc. (Hons.) Biotechnology

PEOs, POs, PSOs, COs:

Program Educational Objectives (PEOs)			
The B.Sc. (The B.Sc. (Hons.) Biotechnology program describe accomplishments that graduates are expected		
to attain the	to attain the following:		
PEO1	Have massive prospects to become a successful researcher in the field of Life Sciences.		
PEO2	Attain skills to compete in diverse Government administrative and technical		
	examinations viz., MPPSC, UPSC and SSC etc.,		
PEO3	Become responsive to the society and country at large, intellectually as well as morally.		
PEO4	Turn into budding industrialists and entrepreneur.		
PEO5	O5 Graduates will imbibe skills to face the international exposure and challenges through		
	recent teaching learning methodologies.		

	Program Outcomes (POs)			
On succes	On successful completion of the B.Sc. (Hons.) Biotechnology program, the students are expected to			
attain the	following:			
PO1	The learners should be able to exhibit expertise in basic science and elemental			
	biotechnological devices			
PO2	The graduates will be able to comprehend the effective standards of highly developed			
	biological sciences			
PO3	The graduates will obtain industrial exposure required in diverse fields like pharma,			
	food and agricultural productions.			
PO4	The learners will get inspired in the direction of intense learning, academics and research			
	in the field of life sciences			
PO5	The graduates will be conscious about health and environment responsiveness and will			
	become socially responsible.			

Program Specific Outcomes (PSOs)				
After the	After the successful completion of B.Sc. (Hons.) Biotechnology program, the students are expected			
to attain	to attain the following:			
PSO1	Graduates will attain analytical skills needed to resolve societal problems and technical			
	issues.			
PSO2	Graduates will acquire interest in intensive lifelong learning.			
PSO3	Graduates d will demonstrate an capability to propose and carry out experiments			
PSO4	Graduates will be supplemented with skill based realistic knowledge which will support			
	them to become self-sufficient.			
PSO5	Graduates will achieve vital understanding on the composition, function and handling of			
	living organisms and thereby highlight its benefit in academia and industry alike.			

SEMESTER-I

BIT010	Cell Biology & BiochemistryTheoryCredit 4(3+1)				
After su	After successful completion, this course enables students:				
CO1	Be able to understand the Function and properties of Monosaccharides, Disaccharides				
	and Polysaccharides.				
CO2	Be able to develop structure and properties of Amino acids.				
CO3	Be able to understand classification, nomenclature and properties of fatty acids, essential fatty acids. Phospholipids, sphingolipids, glycolipids, cerebrosides, gangliosides, Prostaglandins, Cholesterol				
CO4	Be able to understand nomenclature and classification of Enzymes.				
CO5	Be able to discuss the important reactions, energetics and regulation of glycolysis				

BIT020	Microbial Tools & TechniquesTheoryCredit 4(3+1)			
After su	After successful completion, this course enables students:			
CO1	Be able to understand the various aspects of organisms by cell structure, cytosol,			
	compartmentalization of eukaryotic cells, cell fractionation. Cell Membrane and			
	Permeability.			
CO2	Be able to develop skills associated with fluid Mosaic Model, membrane as a dynamic			
	entity, cell recognition and membrane transport Membrane Vacuolar system,			
	Cytoskeleton and cell motility.			
CO3	Be able to understand principles underlying structure, biogenesis and functions			
	including role in protein secretion,			
CO4	Be able to understand the structure and function of Chloroplasts, Nucleus, Nuclear			
	envelope, nuclear pore complex, nuclear lamina, chromosomes.			
CO5	Be able to discuss the important aspects of molecules that mediate cell adhesion,			
	membrane receptors for extra cellular matrix, macromolecules, regulation of receptor			
	expression.			

B.Sc. (Hons.) Biotechnology

BIT032	Biotechnology & Human Welfare Theory Credit 4(3+1)			
After su	After successful completion, this course enables students:			
CO1	Be able to understand the various aspects of interaction between plants and microbes.			
CO2	Be able to know about chlorinated and non-chlorinated organ pollutant degradation.			
CO3	Be able to understand about industry important process including enzyme and			
	polysaccharide synthesis.			
CO4	Be able to understand about application and process of DNA finger printing.			
CO5	Be able to discuss the important aspects in development of non-toxic therapeutic			
	agents, recombinant live vaccines, gene therapy, diagnostics			

SEMESTER-II

BIT040	Mammalian Physiology Theory Credit 4(3+1)			
After su	uccessful completion, this course enables students:			
CO1	Be able to understand the various aspects of mechanism of digestion & absorption of			
	carbohydrates, Proteins, Lipids and nucleic acids.			
CO2	Be able to know about mechanism of working of heart.			
CO3	Be able to understand about structure of cardiac, smooth & skeletal muscle and their			
	physical, chemical & electrical events of mechanism of muscle contraction.			
CO4	Be able to understand the mechanism of generation & propagation of nerve impulse.			
CO5	Be able to discuss the important aspects of Hypothalamus, pituitary, pineal, thymus,			
	thyroid, parathyroid and adrenals, hypo & hyper-secretions			

BIT050	Plant Physiology	Theory	Credit 4(3+1)	
After su	After successful completion, this course enables students:			
CO1	O1 Be able to understand the various aspects of plant anatomy.			
CO2	Be able to know about various transport processes including diffusion, osmosis plasmolysis, imbibition, guttation, and transpiration.			
CO3	Be able to understand about mechanism of uptake of nutrients, mechanism of food transport.			
CO4	Be able to understand importance of photphosphot photorespiratio.	rylation, Calvin	cycle, CAM plants,	
CO5	Be able to discuss the important aspects of physic auxins, gibberlins, cytokinins, abscisic acid, and et	-	d mode of action of	

BIT152	Environmental StudiesTheoryCredit 4(3+1)				
After su	After successful completion, this course enables students:				
CO1	Be able to understand the various aspects of biotic and abiotic component of Forest				
	ecosystem, b) Grassland ecosystem, c) Desert ecosystem, d) Aquatic ecosystems				
	(ponds, streams, lakes, rivers, oceans, estuaries).				
CO2	Be able to know various aspects of renewable and nonrenewable energy sources.				
CO3	Be able to understand principles underlying levels of biological diversity.				
CO4	Be able to understand about causes, effects and controls of Air, water, soil and				
	noise pollution.				
CO5	Be able to discuss the important aspects of Role of Indian and other religions and				
	cultures in environmental conservation.				

BIT062	Developmental Biology	Theory	Credit 4(3+1)		
After su	After successful completion, this course enables students:				
CO1	1 To understand the basic concepts and theories related to developmental biology				
CO2	To understand reproductive organs, gametogenesis, fertilization and illustrate cleavage, blastulation and gastrulation				
CO3	To differentiate the embryology of chick, frog and humans and understand the concept of cell differentiation and gene action in development				
CO4	State the techniques on experimental embryology, different types of placentation in mammals.	prenatal diagno	stic procedures and		
CO5	Describe the organization and structure of the ender other organ systems	ocrine systems a	nd their relation to		

SEMESTER-III

BIT180	Genetics	Theory	Credit 3(3+0)
After su	After successful completion, this course enables students:		
CO1	Students will study the detailed structure of nucle	eic acids.	
CO2	Students will learn in detail the molecular proces and translation. Describe the importance of gener	1	· 1
CO3	Students will learn Mutagenesis, Mutation and microbial evolution.	mutants and their	r significance in
CO4	Students will learn Application of bacterial and eukaryotic plasmids in research. Handle and independently work on lab protocols involving molecular techniques.		
CO5	Students will learn the molecular mechanisms un mutations and DNA damage and repair mechanis		s, detection of
CO6	Students will learn the concept of recombination gene transfer mechanisms in prokaryotes and eul	0 11 0	and elucidate the

BIT190	General Microbiology	Theory	Credit 3(3+0)
After su	accessful completion, this course enables studen	ts:	
CO1	Be able to understand the various aspects of	morphology and	cell structure of
	microorganisms: Bacteria, Algae, Fungi, Protozoa and Unique features of viruses.		
CO2	Be able to develop skills associated with screening, cultivation and maintenance of microorganisms.		
CO3	Be able to understand principles underlying factor	rs affecting growth	n of bacteria.
CO4	Be able to understand the Transformation, Transd	uction and Conjug	gation.
CO5	Be able to discuss the important aspects of Molds	s, Yeasts, bacteria.	Major food borne
	infections and intoxications.		

BIT200	Chemistry I	Theory	Credit 4(4+0)
After su	ccessful completion, this course enables studen	ts:	
CO1	The student will be able to understand rules f electronic configuration of atoms.	filling electro	ns in orbital's &
CO2	The student will understand methods of prepara aromatic compounds.	tion and properti	es of aliphatic and
CO3	The student will understand about various cova found in molecules.	lent and non-cov	alent interaction
CO4	The student will understand the various physical J	properties of s p,	d, f block elements.
CO5	The student will learn the various physical proper	ties of noble gase	28.

BIT212	Industrial FermentationTheoryCredit 4(4+0)		
After su	After successful completion, this course enables students:		
CO1	Be able to understand the various aspects of bioprocess technology including		
	Upstream and downstream processing.		
CO2	Be able to develop skills associated with screening and production of industrial		
	chemicals, biochemicals and chemotherapeutic products.		
CO3	Be able to understand principles underlying metabolic engineering of secondary		
	metabolism for highest productivity.		
CO4	Be able to understand fermentation process and downstream processing including		
	enzyme and cell immobilization techniques in industrial processing.		
CO5	Be able to discuss the important aspects in bioprocess technology including		
	mathematical derivation of growth kinetics		

BIT061	Enterpreneurship DevelopmentTheoryCredit 2(2+0)	
After su	accessful completion, this course enables students:	
CO1	Be able to understand the various aspects of meaning, needs and importance of entrepreneurship.	
CO2	Be able to develop skills associated with screening of industrially important strains.	
CO3	Be able to understand principles underlying the project identification, selection of	
	the product, project formulation, assessment of project feasibility.	
CO4	Be able to understand various aspects related to finance / loans and repayments,	
	characteristics of business finance, fixed capital management: sources of fixed capital,	
	working capital its sources.	
CO5	Be able to discuss the important aspects of marketing research and importance of	
	survey.	

SEMESTER-IV

BIT220	Molecular Biology	Theory	Credit 3(3+0)
After su	ccessful completion, this course enables studer	nts:	
CO1	CO1: Have a conceptual knowledge about DNA	as a genetic mater	ial.
CO2	CO2: The students will be able to understand DN	A replication and	recombination at
	molecular level.		
CO3	CO3: Will be able to discuss the molecular n	nechanisms underl	ying mutations,
	detection of mutations and DNA damage and rep	air mechanisms	
CO4	CO4: Understand the molecular mechanisms inv	olved in transcript	ion and translation.
CO5	CO5: Describe the importance of genetic code an	nd wobble hypothe	sis.
CO6	CO6: Will understand the significance of central	dogma of gene act	tion.

BIT230	Immunology	Theory	Credit 3(3+0)
After su	After successful completion, this course enables students:		
CO1	Be able to understand the various aspects of physic	cal and chemical	structure of DNA;
	Types of DNA: A, B and Z; RNA structure and fu	unctions; Classes	of RNA: mRNA,
	rRNA, tRNA and hnRNA.		
CO2	Be able to know various phase of DNA replication	1.	
CO3	Be able to understand principles underlying types	and mechanism of	of DNA repair
CO4	Be able to understand fermentation process and de	ownstream proces	ssing.
CO5	Be able to discuss the important aspects of transcr	iption.	

BIT240	Chemistry II	Theory	Credit 4(4+0)
After su	accessful completion, this course enables students	:	
CO1	Be able to understand the various types of types of	isomerism.	
CO2	Be able to know various concepts of Valence Bo theory and MOT.	ond theory, Hy	bridization, VSEPR
CO3	Be able to understand various properties inclue property of transition element.	ding oxidation	state, magnetic
CO4	Be able to understand about types of thermodynamic	ic processes, &	their applications in
	daily life.		
CO5	Be able to discuss the important aspects of spectros	copy.	

BIT213	Basics of Forensic scienceTheoryCredit 4(4+0)
After su	accessful completion, this course enables students:
CO1	Demonstrate competency in the collection, processing, analyses, and evaluation of
	evidence.
CO2	Demonstrate competency in the principles of crime scene investigation, including the
	recognition, collection, identification, preservation, and documentation of physical
	evidence.
CO3	Demonstrate an understanding of the scientific method and the use of problem-
	solving within the field of forensic science.
CO4	Identify the role of the forensic scientist and physical evidence within the criminal
	justice system.
CO5	Demonstrate the ability to document and orally describe crime scenes, physical
	evidence, and scientific processes.
CO6	Identify and examine current and emerging concepts and practices within the forensic
	science field.

BIT031	Bioethics & Biosafety	Theory	Credit 2(2+0)	
After su	After successful completion, this course enables students:			
CO1	To understand the fundamentals of bioethics and e	thical issues rela	ited to molecular	
	technologies.			
CO2	To have the concept on the ethical issues concerned with clinical trials, medical			
	errors, negligence etc.			
CO3	To understand the safety issues and ethical use of a	animals in the la	boratory.	
CO4	To get an insight into the good laboratory practices	s in different bio	logical laboratories.	
CO5	To get an insight in to the guidelines and precaution	ons on using radi	oisotopes in	
	laboratory practices.			

SEMESTER-V

BIT250	Bioprocess TechnologyTheoryCredit 4(4+0)		
After su	After successful completion, this course enables students:		
CO1	Be able to understand the various aspects of bioprocess technology.		
CO2	Be able to develop skills associated with screening of industrially important strains.		
CO3	Be able to understand principles underlying design of Fermentor,		
CO4	Be able to understand fermentation process and downstream processing.		
CO5	Be able to discuss the important aspects in bioprocess technology for		
	commercialization purpose of biotechnology products		

BIT260	Recombinant DNA TechnologyTheoryCredit 4(4+0)
After su	ccessful completion, this course enables students:
CO1	Students will study Restriction enzymes- nomenclature, types, and applications.
	Students will learn application of DNA Modifying enzymes- alkaline phosphatase,
	polynucleotide kinase and terminal deoxynucleotidyl transferase.
CO2	Students will study the process of gene cloning and expression. Students will study
	How to construct Gene libraries and Gene delivery.
CO3	Students will learn types of gene delivery & Transcription. Perform PCR
	amplification of DNA sample. Describe blue/white screening and antibiotic
	selection methods of cloning.
CO4	Students will study the process of various hybridization techniques. Describe the
	principle of gene silencing, gene knockouts and gene therapy. Review various
	applications of genetic engineering
CO5	Students will able to Isolate DNA from cell and Perform agarose gel electrophoresis.
	Explain the process of constructing genomic and c-DNA library, Differentiate various
	DNA sequencing methods

BIT271	Bioinformatics	Theory	Credit 3(3+0)		
After su	After successful completion, this course enables students:				
CO1	To understand the contents and properties of bioinformatics databases; perform text-				
	and sequence-based searches, and analyze and dis	cuss the results in	light of molecular		
	biological knowledge.				
CO2	To learn about the major steps in pair wise and multiple sequence alignment, and				
	execute pair wise sequence alignment by dynamic programming.				
CO3	To learn the techniques of predicting the secondary and tertiary structures of protein				
	sequences.				
CO4	To become familiar with the use of a wide variety of internet applications, biological				
	database that can be applied in solving research problems.				
CO5	To understand the theoretical and practical development of useful tools for automation				
	of complex computer jobs, and making these tools accessible on the network from a				
	Web browser.				

BIT272	Environmental BiotechnologyTheoryCredit 3(3+0)			
After successful completion, this course enables students:				
CO1	To get an insight in to the multidisciplinary nature of environmental studies and its			
	importance in other branches of sciences mainly to create public awareness			
	regarding environment.			
CO2	To have an idea about the concept of biodiversity at global, national and local levels;			
	threats to biodiversity and conservation strategies.			
CO3	To get an insight in to the burning issue of environmental pollution describing the			
	concept of pollutants, cause, effects and control measures of air, water, soil, noise,			
	thermal and nuclear pollution.			
CO4	To gain knowledge on Bio-fertilizers, role of symbiotic and asymbiotic nitrogen fixing			
	bacteria in the enrichment of soil, Nitrogen fixation, Nitrogenase complex, Plant			
	Growth Promoting bacteria.			
CO5	To understand the Bioleaching and to understand the significance of genetically			
	modified microbes, plants and animals.			

BIT281	Animal BiotechnologyTheoryCredit 3(3+0)				
After su	After successful completion, this course enables students:				
CO1	Students will learn different methods of gene transfer and their applications in				
	improvement in livestock.				
CO2	To get an insight into transgenesis and applications of transgenic animals for the				
	manufacturing of products that have huge industrial significance.				
CO3	To provide fundamental knowledge about animal diseases and the role of				
	biotechnology to cure the diseases.				
CO4	To familiarize with the techniques of animal cell culture, artificial insemination,				
	embryo transfer techniques and stem cell technology used for quality improvements				
	and production of genetically modified organisms (GMO).				
CO5	To provide fundamental insight into the concept of gene therapy, different vectors in				
	gene therapy, and important aspects of molecular engineering and human genetic				
	engineering.				
CO6	To provide the knowledge of ethics and safety issues related to animal cell culture.				

BIT282	Plant Diversity Theory Credit 3(3+0)				
After s	After successful completion, this course enables students:				
CO1	Be able to understand about the characteristics, classification and economic				
	importance of algae				
CO2	Be able to understand about the characteristics, classification and economic				
	importance of Fungi				
CO3	Be able to understand about the characteristics, classification and economic				
	importance of Bryophytes & Pteridophytes				
CO4	Be able to understand about the characteristics, classification and economic				
	importance of Gymnosperms				
CO5	Be able to know about various plant diseases, their symptoms and control.				

BIT283	Biostatistics	Theory	Credit 3(3+0)		
After su	After successful completion, this course enables students:				
CO1	1 Have a conceptual knowledge about principal concepts about biostatistics and its				
	Relationship with the other sciences.				
CO2	The students will be able to understand about how to collect data relating to variables				
	which will be examined and calculate descriptive statistics from these data.				
CO3	Will be able to define the principal concepts of probability and interpret data via				
	normal distribution.				
CO4	Understand to identify convenient sample by Cor	relation and regre	ssion.		
CO5	Will understand about how to arrange the results of the hypothesis testing and make a				
	statistical decision.	• 1	C .		

SEMESTER-VI

BIT300	Bio Analytical Tools	Theory	Credit 3(3+0)		
After s	After successful completion, this course enables students:				
CO1	Handling and use of microscopes for the study of microorganisms, which are among the basic skills expected from a practicing microbiologist. They also get introduced a variety of modifications in the microscopes for specialized viewing.				
CO2	To understand the basic concept of qualitative and quantitative analysis of a given sample using the principle of spectrophotometry.				
CO3	To understand the importance, principle, and ty and their role in the study of the biological syste	To understand the importance, principle, and types of chromatography techniques and their role in the study of the biological system.			
CO4	To develop the concept on principle and types of role in the study of the biological system. It also helps in learning the method of separating electrophoresis on the basis of their molecular w	g of DNA bands by a	-		
CO5	To familiarize with the important analytical inst the Industrial and R & D sectors	ruments which are e	xtensively used in		

BIT310	Genomics & Proteomics	Theory	Credit 3(3+0)		
After su	After successful completion, this course enables students:				
CO1	To have the basic concept of Genomics and protect	omics.			
CO2	To learn different DNA sequencing methods used i & automated: Maxam & Gilbert and Sangers methods	1 0 0	genome like manual		
CO3					
CO4	To develop the knowledge of protein structure, analizing proteins using molecular tools and techn		fferent methods of		
CO5	To get the basics of analytical Proteomics and its	application.			

BIT321	Industrial Chemistry Theory Credit 4(4+0)				
After s	After successful completion, this course enables students:				
CO1	The knowledge acquired knowledge of design and development of drugs.				
CO2	The student able to understand industrial uses of catalysis reactions.				
CO3	Students will be able to understand various types of distillation processes.				
CO4	Students are able to identify and understand about adulterants in common food items.				
CO5	Students able to understand about green chemistry and designing a Green Synthesis				
	using principles of green chemistry.				

BIT322	Ecology & Environmental Management Theory Credit 4(4+0)				
After su	After successful completion, this course enables students:				
CO1	To understand the environment around us and the organisms living in normal and				
	extreme conditions of the environment and to understand the principle of				
	ecosystem.				
CO2	To gain knowledge on the energy transfer in an ecosystem, food chain, food web and				
	to gain knowledge on different geochemical cycles.				
CO3	To get an insight into the evolutionary processes in ecology and their significance.				
CO4	To get an insight in to the burning issue of environmental pollution describing the				
	concept of pollutants, cause, effects and control measures of air, water, soil, noise,				
	thermal and nuclear pollution.				
CO5	To understand the role of biotechnologies in protection and preservation of				
	environment.				

BIT331	Animal DiversityTheoryCredit 4(4+0)				
After su	After successful completion, this course enables students:				
CO1	To explain the classification of non-chordates and various characteristic features of				
	phylum protozoa and Porifera.				
CO 2	To describe the taxonomic classification, general features, and life functions of				
	Coelenterate, Platyhelminthes & Aschelminths				
CO3	To explain the taxonomic classification of Annelida, Arthropoda & Mollusca and				
	their general features it also gets insight into metamorphosis in insects and their				
	structural diversity.				
CO4	To explain classification and general characters of Echinodermata, Hemichordates &				
	Proto-chordates.				
CO5	To explain the classification of phylum Pisces, Amphibia, Reptilia, Aves &				
	Mammalia Classification including their Origin, adaptation and migration.				

BIT331	Animal Diversity	Theory	Credit 4(4+0)		
After su	After successful completion, this course enables students:				
CO1	Be able to understand the various aspects of g	ene transfer me	thods in animals		
	including microinjection, embryonic stem cell, gene transfer, retrovirus & gene				
	transfer.				
CO2	Be able to know about characteristics and application	ons.of transgenic	Animals e.g. Mice,		
	Cow, Pig, Sheep, Goat, Bird, Insect.				
CO3	Be able to understand various animal diseases including foot-and mouth disease,				
	Coccidiosis, Trypanosomiasis, Theileriosis. Role	of Biotechnole	ogy to cure the		
	diseases				
CO4	Be able to understand various concepts of anim	al propagation	including artificial		
	insemination, animal clones.				
CO5	Be able to discuss the important aspects of genet	ic modification	in medicine - gene		
	therapy, types of gene therapy, vectors in gene therapy	apy, molecular	engineering.		

BIT332	Plant Biotechnology	Theory	Credit 4(4+0)	
After successful completion, this course enables students:				
CO1	Be able to understand the concept of plant tissue culture and applications of			
	different plant tissue culture techniques for the plant regeneration			
CO2	Be able to explain the concept and steps of micropropagation technique and its			
	importance in plant tissue culture			
CO3	Be able to understand the methodology of in vitro haploid plant productions and its			
	importance			
CO4	Be able to explain the procedure of hybrid plant production through protoplast fusion and its importance			
CO5	Be able to know about the applications of genetic engineering for crop improvements			